A new monocyte chemotactic protein-1/chemokine CC motif ligand-2 competitor limiting neointima formation and myocardial ischemia/reperfusion injury in mice.

نویسندگان

  • Elisa A Liehn
  • Anna-Maria Piccinini
  • Rory R Koenen
  • Oliver Soehnlein
  • Tiziana Adage
  • Roxana Fatu
  • Adelina Curaj
  • Alexandra Popescu
  • Alma Zernecke
  • Andreas J Kungl
  • Christian Weber
چکیده

OBJECTIVES A nonagonist monocyte chemotactic protein-1 (MCP-1/CCL2) mutant (PA508) with increased affinity for glycosaminoglycans and thus competing with CCL2 was evaluated as a candidate for preventing neointima formation or myocardial ischemia/reperfusion injury. BACKGROUND Myocardial infarction (MI) remains a major cause of death worldwide despite improved interventional and therapeutic options. Therefore, the discovery of drugs that limit restenosis after intervention and post-MI damage remains an important challenge. METHODS The function of PA508 was assessed in functional assays in vitro and in mouse models of wire-induced neointima formation and experimental MI. RESULTS PA508 was functionally inactive in CC chemokine receptor 2 (CCR2) binding and calcium influx but inhibited monocyte chemotaxis or transendothelial migration toward CCL2, suggesting that it interferes with CCL2 presentation. In wild-type but not CCR2-deficient mice, PA508 reduced inflammatory leukocyte recruitment without affecting differential leukocyte counts, CCL2 levels, organ function, or morphology, indicating that it specifically attenuates the CCL2-CCR2 axis. Compared with vehicle, daily intraperitoneal injection of PA508 significantly (p < 0.05, n = 5) reduced neointimal plaque area and mononuclear cell infiltration in carotid arteries of hyperlipidemic apolipoprotein E-deficient mice while increasing smooth muscle cell content. In C57Bl/6J mice that underwent myocardial ischemia/reperfusion, treatment with PA508 significantly reduced infarction size, monocyte infiltration, and collagen and myofibroblast content in the infarction area and preserved heart function compared with vehicle (p < 0.05, n = 4 to 8). CONCLUSIONS Here we demonstrate that administration of a rationally designed CCL2 competitor reduced inflammatory monocyte recruitment, limited neointimal hyperplasia, and attenuated myocardial ischemia/reperfusion injury in mice and could therefore be envisioned as a combined therapeutic approach for restenosis and MI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemokines in vascular remodeling.

The arterial vessel wall response to a variety of injuries consists in structural changes, which can result in luminal narrowing and aggravation of the underlying disease. This arterial remodeling is characterized by neointima formation and medial thickening, inflammatory cell recruitment and endothelial dysfunction. Chemokines and the corresponding receptors have been shown to participate at e...

متن کامل

Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice.

BACKGROUND AND PURPOSE The chemokine, monocyte chemoattractant protein-1 (CCL2), is a major factor driving leukocyte infiltration into the brain parenchyma in a variety of neuropathologic conditions associated with inflammation, including stroke. In addition, recent studies indicate that CCL2 and its receptor (CCR2) could have an important role in regulating blood-brain barrier (BBB) permeabili...

متن کامل

Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy.

BACKGROUND Cardiac interstitial fibrosis plays an important role in the pathogenesis of ischemic cardiomyopathy, contributing to systolic and diastolic dysfunction. We have recently developed a mouse model of fibrotic noninfarctive cardiomyopathy due to brief repetitive myocardial ischemia and reperfusion. In this model, fibrotic changes are preceded by marked and selective induction of the CC ...

متن کامل

Rho-Kinase Activation in Leukocytes Plays a Pivotal Role in Myocardial Ischemia/Reperfusion Injury

The Rho/Rho-kinase pathway plays an important role in many cardiovascular diseases such as hypertension, atherosclerosis, heart failure, and myocardial infarction. Although previous studies have shown that Rho-kinase inhibitors reduce ischemia/reperfusion (I/R) injury and cytokine production, the role of Rho-kinase in leukocytes during I/R injury is not well understood. Mice were subjected to 3...

متن کامل

CaM Kinase II mediates maladaptive post-infarct remodeling and pro-inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury

CaMKII was suggested to mediate ischemic myocardial injury and adverse cardiac remodeling. Here, we investigated the roles of different CaMKII isoforms and splice variants in ischemia/reperfusion (I/R) injury by the use of new genetic CaMKII mouse models. Although CaMKIIδC was upregulated 1 day after I/R injury, cardiac damage 1 day after I/R was neither affected in CaMKIIδ-deficient mice, CaMK...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American College of Cardiology

دوره 56 22  شماره 

صفحات  -

تاریخ انتشار 2010